Билет 1

Виды ионизирующего излучения. Непосредственно и косвенно ионизирующее излучение. Характеристика полей ионизирующих излучений. Сечение взаимодействия.

Задача. Докажите, что освещенность, создаваемая изотропным (сила света источника не зависит от направления) точечным источником света I на бесконечно малой площадке, удаленной на расстояние r от источника, равна $E = \frac{I}{r^2} \cos i$, где i - угол падения луча на площадку.

Билет 2

Поглощенная доза и керма ионизирующего излучения.

Задача. Докажите, что в том случае, когда яркость источника не зависит от направления, светимость M и яркость L связаны соотношением $M = \pi L$

Билет 3

Активность. Виды радиоактивности. Схемы распада радионуклидов.

Задача . На лист белой бумаги размером 10x25 см нормально к поверхности падает световой поток Φ =50 лм. Принимая коэффициент рассеяния бумажного листа P =0,7, определите для него:

- 1) освещенность E ,
- 2) светимость M,
- 3) яркость L .

Билет 4

Взаимодействие фотонов с веществом. Фотоэффект. Комптоновское рассеяние. Образование электрон-позитронных пар.

Задача. Чему равна энергия связи ядра изотопа натрия $^{11}_{23}Na$? Масса ядра 22,9898 а.е.м.

Соотношение между единицами

Атомная единица массы 1а.е.м.=1,66· 10^{-27} кг 1 атомная единица массы (1а.е.м.) эквивалентна 931,5 МэВ Электронвольт 1эВ=1,6· 10^{-19} Дж

масса частиц

электрона $9,1\cdot 10^{-31}$ кг = $5,5\cdot 10^{-4}$ а.е.м. протона $1,673\cdot 10^{-27}$ кг = 1,007 а.е.м. нейтрона $1,675\cdot 10^{-27}$ кг = 1,008 а.е.м.

Билет 5

Эквивалентная доза. Эффективная доза. Система ограничения доз. Предельная доза. Предельно допустимые уровни внешних потоков ионизирующего излучения.

Задача. Переменный трехфазный ток. Фазное напряжение (между фазой и

нейтральным проводом) равно 230 вольт. Определить линейное напряжение (между фазами).

Билет 6

Активные формы кислорода. Кислородный эффект при облучении различными видами ионизирующего излучения.

Задача . Определить звуковое давление в Па (мм.рт.ст.) при уровне звукового давления равном $60~\mathrm{д}$ Б

Билет 7

Естественный радиационный фон и его составляющие.

Задача. Определить уровень звукового давления в дБ при звуковом давлении равном атмосферному.

Билет 8

Техногенный радиационный фон и его составляющие. Дозовые нагрузки в медицине.

Задача. Энергия покоящегося тела равна $E_0 = m_0 c$, где m_0 -масса покоя и C -

скорость света. Энергия движущегося теля равна $E = \frac{m_0 c^2}{\sqrt{1-rac{v^2}{c^2}}}$, где V - скорость тела.

Используя эти формулы показать, что при $V \le C$, кинетическая энергия тела определяется обычной формулой $E_k = \frac{m_0 v^2}{2}$.

Билет 9

Активность. Виды радиоактивности. Характеристика слабого взаимодействия.

Задача. Уровень интенсивности шума одного источника составляет 60 дБ. Найти уровень интенсивности шума от 10 и 100 одинаковых источников шума.

Билет 10

Ультрафиолетовое излучение

Деление ультрафиолетового излучения на диапазоны (A, B, C) по степени воздействия на человека Нормирование УФ излучения

Задача. Определить длину волны λ_{k} , при которой энергия светового кванта равна энергии покоя электрона. Такая длина волны называется комптоновской длиной для электрона

Билет 11

Ультрафиолетовое излучение

Фототипы кожи человека

Виды раковых заболеваний кожи человека

Задача. В результате комптоновского рассеяния на свободном покоящемся электроне

длина волны фотона с энергией $E_{\scriptscriptstyle \mathcal{F}}$ увеличилась в α раз. Найти кинетическую энергию $E_{\scriptscriptstyle \mathcal{E}}$ электрона отдачи.

Билет 12

Лазерное излучение

Опасные и вредные факторы при эксплуатации лазеров

Вредные воздействия лазерного излучения

Нормирование лазерного излучения

Меры защиты от воздействия лазерного излучения

Задача. Определить активность 1 г 226 Ra, период полураспада которого 1600 лет.

Билет 13

Производственное освещение

Естественное освещение

Системы естественного освещения

Задача. В воздухе на высоте уровня моря за счет космического излучения в среднем образуется 2 пары ионов в 1 см 3 в 1 с. Определить поглощенную дозу в воздухе за год, если на образование одной пары ионов затрачивается энергия 33.85 эВ. Плотность воздуха принять равной $1.29 \cdot 10^{-3} \, \text{г/см}^3$.

Билет 14

Производственное освещение

Физиологические характеристики зрения

Светотехнические величины

Задача. На расстоянии 0.3 м от точечного источника 60 Со мощность воздушной кермы (дозы), обусловленная гамма-излучением, составляет $1\cdot 10^{-7}$ Гр/с. На каком расстоянии от источника можно работать, чтобы доза облучения не превышала предельно допустимой величины при 36-часовой рабочей неделе и равномерном распределении дозы по году?

Билет 15

Производственное освещение

Искусственное освещение

Системы искусственного освещения

Факторы, учитываемые при нормировании искусственного освещения

 ${f 3}$ адача . Ядро ${}_1^1 H$ захватывает медленный нейтрон и испускает ${\cal Y}$ -квант. Чему равна энергия ${\cal Y}$ -кванта ?

Дефект масс $\Delta = M$ - A

 $\Delta({}_{1}^{1}H) = 7288,969 \text{ keV}$

$$\Delta(_1^2H)$$
 = 13135,720 keV
 $\Delta(n)$ = 8071,316 keV

Билет 16

Переменный ток. Стандарт принятый в России. Воздействие электрического тока на организм человека. Причины электрических травм. Местные электрические травмы. Общие электрические травмы

Задача. Ядро ${}^{7}_{3}Li$ захватывает медленный нейтрон и испускает ${\cal Y}$ -квант. Чему равна энергия ${\cal Y}$ -кванта ?

Дефект масс $\Delta = M$ - A

 $\Delta({}_{3}^{8}Li) = 20946,65 \text{ keV}$

 $\Delta({}_{3}^{7}Li) = 14908,14 \text{ keV}$

 $\Delta(n) = 8071,316 \text{ keV}$

Билет 17

Производственный шум (звук)

Вредное воздействие шума. Физические характеристики шума (звука)

Задача. Определить длину волны λ_k , при которой энергия светового кванта равна энергии покоя электрона. Такая длина волны называется комптоновской длиной для электрона

Билет 18

Производственный шум (звук)

Звуковое восприятие человеком. Нормирование шума. Нормы шума для помещений лабораторий. Мероприятия по борьбе с шумом

Задача. В результате комптоновского рассеяния на свободном покоящемся электроне длина волны фотона с энергией $E_{\scriptscriptstyle \mathcal{F}}$ увеличилась в α раз. Найти кинетическую энергию $E_{\scriptscriptstyle e}$ электрона отдачи.

Билет 19

Понятие риска.

Управление риском. Принципы определения допустимого уровня риска

Задача. Чему равна энергия связи ядра изотопа натрия $^{11}_{23}Na$? Масса ядра 22,9898 а.е.м.

Соотношение между единицами

Атомная единица массы 1а.е.м.=1,66·10⁻²⁷ кг 1 атомная единица массы (1а.е.м.) эквивалентна 931,5 МэВ Электронвольт 1эВ=1,6·10⁻¹⁹ Дж

масса частиц

электрона $9,1\cdot 10^{-31}$ кг $=5,5\cdot 10^{-4}$ а.е.м. протона $1,673\cdot 10^{-27}$ кг =1,007 а.е.м. нейтрона $1,675\cdot 10^{-27}$ кг =1,008 а.е.м.

Билет 20
Инфразвук
Опасность для человека. Нормирование инфразвука
Задача. Уровень интенсивности шума одного источника составляет 60 дБ. Найти
уровень интенсивности шума от 10 и 100 одинаковых источников шума.
Билет 21
Вредные вещества. Озон – польза и вред
Бредные вещества. Озон польза и вред
Задача.
В организм человека попало 10 мг ⁵⁵ Fe. Найти значение поглощенной дозы за 10-
летний период. Период полураспада ⁵⁵ Fe =2.9 года. Q=0.22 МэВ.
1 эВ = 1.602·10 ⁻¹⁹ Дж.
$N_{ m A}=6{,}022\ 140\ 76{\cdot}10^{23}\ { m моль}^{-1}.$ Число Авогадро
NA - 0,022 140 70·10 моль . число Авогадро

Γ